Spire-Type Actin Nucleators Cooperate with Formin-2 to Drive Asymmetric Oocyte Division
نویسندگان
چکیده
Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2-6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates.
منابع مشابه
Small Molecule Inhibitor of Formin Homology 2 Domains (SMIFH2) Reveals the Roles of the Formin Family of Proteins in Spindle Assembly and Asymmetric Division in Mouse Oocytes
Dynamic actin reorganization is the main driving force for spindle migration and asymmetric cell division in mammalian oocytes. It has been reported that various actin nucleators including Formin-2 are involved in the polarization of the spindle and in asymmetric cell division. In mammals, the formin family is comprised of 15 proteins. However, their individual roles in spindle migration and/or...
متن کاملPing-Pong Positioning: Alternating Protein Interactions at Actin Filament Barbed Ends Helps Establish Polarity in Mammalian Oocytes
For mammalian egg cells to form successfully, the precursor cell (the oocyte) must divide asymmetrically, forming a large egg that contains the storage material required for embryo development, and a small polar body that receives surplus chromosomes. How does the oocyte manage this asymmetrical division? Key to the answer is a meshwork of actin filaments that moves the chromosome-segregating s...
متن کاملStructural and functional insights into the Spir/formin actin nucleator complex.
The diversity of cellular actin functions is attained by the activation of actin nucleator complexes, which initiate the polymerization of actin monomers into a helical double-stranded filament at defined subcellular compartments. Next to actin functions at the cell membrane, including different forms of membrane protrusions and invaginations, actin dynamics at intracellular membranes has recen...
متن کاملSpire and Formin 2 Synergize and Antagonize in Regulating Actin Assembly in Meiosis by a Ping-Pong Mechanism
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic meas...
متن کاملRegulatory interactions between two actin nucleators, Spire and Cappuccino
Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from C...
متن کامل